Operator splitting for the KdV equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operator splitting for the KdV equation

We provide a new analytical approach to operator splitting for equations of the type ut = Au + B(u) where A is a linear operator and B is quadratic. A particular example is the Korteweg–de Vries (KdV) equation ut−uux +uxxx = 0. We show that the Godunov and Strang splitting methods converge with the expected rates if the initial data are sufficiently regular.

متن کامل

Operator Splitting for Kdv

We apply the method of operator splitting on the generalized Korteweg{de Vries (KdV) equation ut +f(u)x+"uxxx = 0, by solving the nonlinear conservation law ut +f(u)x = 0 and the linear dispersive equation ut + "uxxx = 0 sequentially. We prove that if the approximation obtained by operator splitting converges, then the limit function is a weak solution of the generalized KdV equation. Convergen...

متن کامل

Operator Splitting Methods for the Wigner-poisson Equation

1. I n t r o d u c t i o n . In this paper we shall discuss operator splitting methods to discretize the linear Wigner equation and the coupled Wigner-Poisson system. The Wigner formalism, which represents a phase-space description of quantum mechanics, has in recent years a t t racted considerable at tent ion of solid s tate physicists for including quantum effects in the simulation of ul tra-...

متن کامل

Symplectic splitting operator methods for the time-dependent Schrodinger equation.

We present a family of symplectic splitting methods especially tailored to solve numerically the time-dependent Schrodinger equation. When discretized in time, this equation can be recast in the form of a classical Hamiltonian system with a Hamiltonian function corresponding to a generalized high-dimensional separable harmonic oscillator. The structure of the system allows us to build highly ef...

متن کامل

A solution of an operator equation related to the KdV equation

For a given nonzero bounded linear operator A on a Banach space X, we show that if A or A∗ has an eigenvalue then, except when the dimension of X is equal to two and the trace of A is zero, there exists a bounded linear operator B on X such that (i) AB + BA is of rank one, and (ii) I + f (A)B is invertible for every function f analytic in a neighborhood of the spectrum of A. This result was mot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2011

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-2010-02402-0